જો ${z_1}$ અને ${z_2}$ એ બે સંકર સંખ્યા હોય ${z_1} \ne {z_2}$ અને $|{z_1}|\, = \,|{z_2}|$ છે. જો ${z_1}$ ને ધન વાસ્તવિક ભાગ છે અને ${z_2}$ ઋણ કાલ્પનિક ભાગ છે ,તો $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$ એ . . . થાય.
શુદ્ધ કાલ્પનિક
વાસ્તવિક અને ધન
વાસ્તવિક અને ઋણ
એકપણ નહીં.
જો ${z_1}.{z_2}........{z_n} = z,$ તો $arg\,{z_1} + arg\,{z_2} + ....$+$arg\,{z_n}$ અને $arg$$z$ ના કોણાંકનો તફાવત . . . .
જો $z =2+3 i$ હોય તો $z ^{5}+(\overline{ z })^{5}$ ની કિમંત મેળવો.
$a$ એ વાસ્તવિક હોય તો , $(z + a)(\bar z + a)$= . . . .
સંકર સંખ્યા $\sin \,\frac{{6\pi }}{5}\, + \,i\,\left( {1\, + \,\cos \,\frac{{6\pi }}{5}} \right)$ નો કોણાક મેળવો
ધારો કે $z=1+i$ અને $z _1=\frac{1+ i \overline{ z }}{\overline{ z }(1- z )+\frac{1}{ z }}$ તો $\frac{12}{\pi} \arg \left( z _1\right)=...........$