જો સમીકરણ $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ ને $\theta$ માટે વાસ્તવિક ઉકેલો હોય તો $\lambda$ ની કિમત ......... અંતરાલમાં આવેલ છે
$\left[-\frac{3}{2},-\frac{5}{4}\right]$
$\left(-\frac{1}{2},-\frac{1}{4}\right]$
$\left(-\frac{5}{4},-1\right)$
$\left[-1,-\frac{1}{2}\right]$
જો $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta + \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ હોય તો $\theta = $
જો $(1 + \tan \theta )(1 + \tan \phi ) = 2$, તો $\theta + \phi =$ .....$^o$
અહી $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$ હોય તો . . .
$x \in \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ માં $x$ ની કેટલી કિમત મળે કે જેથી $2sin^22x = 2cos^28x + cos10x$ થાય
સમીકરણ $\sin ^{7} x+\cos ^{7}=1, x \in[0,4 \pi]$ ના ઉકેલની સંખ્યા મેળવો.