જો $n$ એ પૂર્ણાક હોય તો સમીકરણ $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ નો વ્યાપક ઉકેલ મેળવો.
$x = 2n\pi - \frac{\pi }{{12}}$ અથવા $x = 2n\pi + \frac{{7\pi }}{{12}}$
$x = n\pi \pm \frac{\pi }{{12}}$
$x = 2n\pi + \frac{\pi }{{12}}$ અથવા $x = 2n\pi - \frac{{7\pi }}{{12}}$
$x = n\pi + \frac{\pi }{{12}}$ અથવા $x = n\pi - \frac{{7\pi }}{{12}}$
ચલ $x$ એ સમીકરણ $\left| {\sin \,x\,\cos \,x} \right| + \sqrt {2 + {{\tan }^2}\,x + {{\cot }^2}\,x} = \sqrt 3$ એ ક્યાં અંતરાલમાં આવે છે ?
જો $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, તો $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ = .......
જો $(1 + \tan \theta )(1 + \tan \phi ) = 2$, તો $\theta + \phi =$ .....$^o$
$[0,4\pi ]$ માં સમીકરણ $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ ના કેટલા ઉકેલો મળે ?
સમીકરણ $(1 + \tan x + {\tan ^2}x)$ $(1 - \cot x + {\cot ^2}x)$ ની કિમત ધન થવા માટે $x$ ની કિમત . . . થવી જોઈએ.