જો $\sec x\cos 5x + 1 = 0$, કે જ્યાં $0 < x < 2\pi $, તો $x =$
$\frac{\pi }{5},\frac{\pi }{5}$
$\frac{\pi }{5}$
$\frac{\pi }{4}$
એકપણ નહિ.
જો $cosx + secx =\, -2$, હોય તો ધન પૂર્ણાક $n$ માટે $cos^n x + sec^n x$ ની કિમત
સમીકરણ $2{\cos ^2}\left( {\frac{x}{2}} \right)\,{\sin ^2}x\, = \,{x^2}\, + \,\frac{1}{{{x^2}}},\,0\,\, \leqslant \,\,x\,\, \leqslant \,\,\frac{\pi }{2}\,\,$ ના ............... ઉકેલો મેળવો
જો $\cos \,x = \frac{{2\cos y - 1}}{{2 - \cos y}},x,\,y\, \in \,\left( {0,\pi } \right),$ હોય તો $tan(x/2)cot(y/2) =$
જો $S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\begin{array}{*{20}{c}}
0&{\cos {\mkern 1mu} x}&{ - \sin {\mkern 1mu} x}\\
{\sin {\mkern 1mu} x}&0&{\cos {\mkern 1mu} x}\\
{\cos {\mkern 1mu} x}&{\sin {\mkern 1mu} x}&0
\end{array}} \right| = 0} \right\},$ તો $\sum\limits_{x \in S} {\tan \left( {\frac{\pi }{3} + x} \right)} $ =
અંતરાલ $[0, 5\pi ]$ માં સમીકરણ $sin\, 2x - 2\,cos\,x+ 4\,sin\, x\, = 4$ ના ઉકેલો ની સંખ્યા મેળવો.