જો $S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\begin{array}{*{20}{c}}
0&{\cos {\mkern 1mu} x}&{ - \sin {\mkern 1mu} x}\\
{\sin {\mkern 1mu} x}&0&{\cos {\mkern 1mu} x}\\
{\cos {\mkern 1mu} x}&{\sin {\mkern 1mu} x}&0
\end{array}} \right| = 0} \right\},$ તો $\sum\limits_{x \in S} {\tan \left( {\frac{\pi }{3} + x} \right)} $ =
$4 + 2\sqrt 3 $
$-2 + \sqrt 3 $
$-2 - \sqrt 3 $
$-4 - 2\sqrt 3 $
સમીકરણ $\cos 2\theta = \sin \alpha ,$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\mathrm{n}$ એ સમીકરણ $2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$ નાં ઉકેલની સંખ્યા છે અને $S$ એ ઉકેલનો સરવાળો છે તો ક્રમયુક્ત $(\mathrm{n}, \mathrm{S})$ જોડ મેળવો.
જો સમીકરણ $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ ને $k$ ઉકેલો $[0,k \pi]$ માં મળે તો $k$ ની પૂર્ણાક કિમતોની સંખ્યા મેળવો.
સમીકરણ $\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ ના $(0, \pi)$ માં ઉકેલોની સંખ્યા મેળવો.
સમીકરણ $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ નું સમાધાન કરે તેવી $\theta $ ની ${0^o}$ અને ${360^o}$ વચ્ચેની કિમતો મેળવો.