यदि $\cos 2\theta + 3\cos \theta = 0$, तो $\theta $ का व्यापक मान है
$2n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 + \sqrt {17} }}{4}$
$2n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 - \sqrt {17} }}{4}$
$n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 + \sqrt {17} }}{4}$
$n\pi \pm {\cos ^{ - 1}}\frac{{ - 3 - \sqrt {17} }}{4}$
यदि $2{\sin ^2}\theta = 3\cos \theta ,$ जहाँ $0 \le \theta \le 2\pi $, तो $\theta = $
समीकरण $3\cos x + 4\sin x = 6$ रखता है
$\cot \theta = \sin 2\theta $ (जहाँ $\theta \ne n\pi $ तथा $n$ एक पूर्णांक है), यदि $\theta = $
माना $S =\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$ है। तब समुच्चय $A =\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ में अवयवों की संख्या है
समीकरण $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ के अंतराल $[0, 2\pi]$ में हलों की संख्या निम्न है