If $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$, then the general value of $\theta $ is

  • A

    $n\pi + \frac{\pi }{5}$

  • B

    $\left( {n + \frac{1}{6}} \right)\frac{\pi }{5}$

  • C

    $\left( {2n \pm \frac{1}{6}} \right)\frac{\pi }{5}$

  • D

    $\left( {n + \frac{1}{3}} \right)\frac{\pi }{5}$

Similar Questions

The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is

Let $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$

$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ Then.

  • [JEE MAIN 2022]

All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation

  • [JEE MAIN 2019]

Values of $\theta (0 < \theta < {360^o})$ satisfying ${\rm{cosec}}\theta + 2 = 0$ are

The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :