જો $\sin \theta + \cos \theta = 1$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$2n\pi $
$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{4}$
$2n\pi + \frac{\pi }{2}$
એકપણ નહિ.
સમીકરણ $5$ $cos^2 \theta -3 sin^2 \theta + 6 sin \theta cos \theta = 7$ના અંતરાલ $[0, 2 \pi] $ માં કુલ કેટલા ઉકેલો મળે ?
$'p'$ ની પૂર્ણાક કિમતોની સંખ્યા કેટલી મળે કે જેથી સમીકરણ $99\cos 2\theta - 20\sin 2\theta = 20p + 35$ નો ઉકેલ શક્ય થાય
જો $sin^4\,\,\alpha + 4\,cos^4\,\,\beta + 2 = 4\sqrt 2\,\,sin\,\alpha \,cos\,\beta ;$ $\alpha \,,\,\beta \, \in \,[0,\pi ],$ તો $cos( \alpha + \beta)$ = ......
$\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x} - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ ના $x \in [0,2\pi ]$ માં ઉકેલોની સંખ્યા .......... છે.
$\sin x=-\frac{\sqrt{3}}{2}$ નો ઉકેલ મેળવો.