$\sin x=-\frac{\sqrt{3}}{2}$ નો ઉકેલ મેળવો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have $\sin x=-\frac{\sqrt{3}}{2}$

$=-\sin \frac{\pi}{3}=\sin \left(\pi+\frac{\pi}{3}\right)$

$=\sin \frac{4 \pi}{3}$

Hence $\sin x=\sin \frac{4 \pi}{3},$ which gives

$x=n \pi+(-1)^{n} \frac{4 \pi}{3}, \text { where } n \in Z$

Similar Questions

જો $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

સમીકરણ $secx = 1 + cosx + cos^2x + ........ \infty$ ના $x \in [-50 \pi, 50 \pi]$ માં કેટલા ઉકેલો મળે?

$x$ ની ............ કિમતોના ગણ માટે  $cosx > sinx,$ થાય

જ્યાં $x\, \in \,\,\left( {\frac{\pi }{2}\,,\,\frac{{3\pi }}{2}} \right)$

સમીકરણ $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ ના ઉકેલોની સંખ્યા ..... છે

  • [JEE MAIN 2022]

જો  કોઈ $0 < \alpha < \frac{\pi }{2}$ માટે ત્રિકોણ ની બાજુઓ $\sin \alpha ,\,\cos \alpha $ અને $\sqrt {1 + \sin \alpha \cos \alpha } $ આપેલ છે તો ત્રિકોણનો સૌથી મોટો ખૂણો......$^o$ મેળવો.

  • [AIEEE 2004]