If $\theta $ lies in the second quadrant, then the value of $\sqrt {\left( {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} $
$2\sec \theta $
$ - 2\sec \theta $
$2{\rm{cosec}} \, \theta $
None of these
Let the function $:(0, \pi) \rightarrow R$ be defined by
$f (\theta)=(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^4$
Suppose the function $f$ has a local minimum at $\theta$ precisely when $\theta \in\left\{\lambda_1 \pi, \ldots, \lambda_{ T } \pi\right\}$, where $0<\lambda_1<\cdots<\lambda_r<1$. Then the value of $\lambda_1+\cdots+\lambda_r$ is. . . . .
The value of $\cos A - \sin A$ when $A = \frac{{5\pi }}{4},$ is
Find the values of other five trigonometric functions if $\sin x=\frac{3}{5}, x$ lies in second quadrant.
If $sin\theta_1 + sin\theta_2 + sin\theta_3 = 3,$ then $cos\theta_1 + cos\theta_2 + cos\theta_3=$
The incorrect statement is