If $\theta $ lies in the second quadrant, then the value of $\sqrt {\left( {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} $
$2\sec \theta $
$ - 2\sec \theta $
$2{\rm{cosec}} \, \theta $
None of these
If $sin\theta_1 + sin\theta_2 + sin\theta_3 = 3,$ then $cos\theta_1 + cos\theta_2 + cos\theta_3=$
If $A = 130^\circ $ and $x = \sin A + \cos A,$ then
The equation ${\sin ^2}\theta = \frac{{{x^2} + {y^2}}}{{2xy}},x,y, \ne 0$ is possible if
If $\tan A + \cot A = 4,$ then ${\tan ^4}A + {\cot ^4}A$ is equal to
If $\sin A,\cos A$ and $\tan A$ are in $G.P.$, then ${\cos ^3}A + {\cos ^2}A$ is equal to