Find the value of $\sin \frac{31 \pi}{3}$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that values of sin $x$ repeats after an interval of $2 \pi .$ Therefore

$\sin \frac{31 \pi}{3}$

$=\sin \left(10 \pi+\frac{\pi}{3}\right)$

$=\sin \frac{\pi}{3}$

$=\frac{\sqrt{3}}{2}$

Similar Questions

The value of $\tan ( - 945^\circ )$ is

Convert $6$ radians into degree measure.

Prove that: $(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2} \frac{x+y}{2}$

Find the radian measures corresponding to the following degree measures:

$520^{\circ}$

If $\sin A,\cos A$ and $\tan A$ are in $G.P.$, then ${\cos ^3}A + {\cos ^2}A$ is equal to