Find the value of $\sin \frac{31 \pi}{3}$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that values of sin $x$ repeats after an interval of $2 \pi .$ Therefore

$\sin \frac{31 \pi}{3}$

$=\sin \left(10 \pi+\frac{\pi}{3}\right)$

$=\sin \frac{\pi}{3}$

$=\frac{\sqrt{3}}{2}$

Similar Questions

If $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$$ = \tan \alpha \tan \beta \tan \gamma $, then $(\sec \alpha - \tan \alpha )(\sec \beta - \tan \beta )$$(\sec \gamma - \tan \gamma ) = $

In a circle of diameter $40 \,cm ,$ the length of a chord is $20 \,cm .$ Find the length of minor arc of the chord.

$(m + 2)\sin \theta + (2m - 1)\cos \theta = 2m + 1,$ if

Prove that $\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$

If $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ then $\cos \theta + \sin \theta $ is equal to