If $\cot \,\theta + \tan \theta = m$ and $\sec \theta - \cos \theta = n,$ then which of the following is correct

  • A

    $m{(m{n^2})^{1/3}} - n{(n{m^2})^{1/3}} = 1$

  • B

    $m{({m^2}n)^{1/3}} - n{(m{n^2})^{1/3}} = 1$

  • C

    $n{(m{n^2})^{1/3}} - m{(n{m^2})^{1/3}} = 1$

  • D

    $n{({m^2}n)^{1/3}} - m{(m{n^2})^{1/3}} = 1$

Similar Questions

If $\tan \theta = - \frac{1}{{\sqrt {10} }}$ and $\theta $ lies in the fourth quadrant, then $\cos \theta = $

Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$\frac{5 \pi}{3}$

If ${\tan ^2}\alpha {\tan ^2}\beta + {\tan ^2}\beta {\tan ^2}\gamma + {\tan ^2}\gamma {\tan ^2}\alpha $$ + 2{\tan ^2}\alpha {\tan ^2}\beta {\tan ^2}\gamma = 1,$ then the value of ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $ is

If $x = \sec \theta + \tan \theta ,$ then $x + \frac{1}{x} = $

If $\cos \theta = \frac{1}{2}\left( {x + \frac{1}{x}} \right)$, then $\frac{1}{2}\left( {{x^2} + \frac{1}{{{x^2}}}} \right) = $