If $\cot \,\theta + \tan \theta = m$ and $\sec \theta - \cos \theta = n,$ then which of the following is correct
$m{(m{n^2})^{1/3}} - n{(n{m^2})^{1/3}} = 1$
$m{({m^2}n)^{1/3}} - n{(m{n^2})^{1/3}} = 1$
$n{(m{n^2})^{1/3}} - m{(n{m^2})^{1/3}} = 1$
$n{({m^2}n)^{1/3}} - m{(m{n^2})^{1/3}} = 1$
Which of the following relations is possible
If $\tan \theta = \frac{{ - 4}}{3},$ then $\sin \theta = $
Prove that: $\sin 3 x+\sin 2 x-\sin x=4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}$
If $\sin \theta + {\rm{cosec}}\theta = 2,$ the value of ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ is
Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2},$ if $\tan x=\frac{-4}{3}, x$ in quadrant $II$