If $\tan \theta = - \frac{1}{{\sqrt {10} }}$ and $\theta $ lies in the fourth quadrant, then $\cos \theta = $

  • A

    $1/\sqrt {11} $

  • B

    $ - 1/\sqrt {11} $

  • C

    $\sqrt {\frac{{10}}{{11}}} $

  • D

    $ - \sqrt {\frac{{10}}{{11}}} $

Similar Questions

If $\tan \theta = \frac{a}{b},$ then $\frac{{\sin \theta }}{{{{\cos }^8}\theta }} + \frac{{\cos \theta }}{{{{\sin }^8}\theta }} = $

The value of $2({\sin ^6}\theta + {\cos ^6}\theta ) - 3({\sin ^4}\theta + {\cos ^4}\theta ) + 1$ is

If $\alpha = 22^\circ 30',$ then $(1 + \cos \alpha )(1 + \cos 3\alpha )$ $(1 + \cos 5\alpha )(1 + \cos 7\alpha )$ equals

If $\sin {\theta _1} + \sin {\theta _2} + \sin {\theta _3} = 3,$ then $\cos {\theta _1} + \cos {\theta _2} + \cos {\theta _3} = $

If $\sin x=-\frac{3}{5}$, where $\pi < x < \frac{3 \pi}{2}$ then $80\left(\tan ^2 x-\cos x\right)$ is equal to :

  • [JEE MAIN 2024]