यदि $x = a{\cos ^3}\theta ,y = b{\sin ^3}\theta ,$ तब
${\left( {\frac{a}{x}} \right)^{2/3}} + {\left( {\frac{b}{y}} \right)^{2/3}} = 1$
${\left( {\frac{b}{x}} \right)^{2/3}} + {\left( {\frac{a}{y}} \right)^{2/3}} = 1$
${\left( {\frac{x}{a}} \right)^{2/3}} + {\left( {\frac{y}{b}} \right)^{2/3}} = 1$
${\left( {\frac{x}{b}} \right)^{2/3}} + {\left( {\frac{y}{a}} \right)^{2/3}} = 1$
$\cos 15^\circ = $
यदि $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ तथा $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ हो, तब ${(m + n)^{2/3}} + {(m - n)^{2/3}}$ बराबर है
यदि $\sin \theta = \frac{{24}}{{25}} $ हो और $\theta $ द्वितीय चतुर्थांश में है, तब $\sec \theta + \tan \theta = $
$\tan \frac{19 \pi}{3}$ के मान ज्ञात कीजिए
सिद्ध कीजिए
$(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2} \frac{x+y}{2}$