Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).
$\frac{11}{16}$
We know that $\pi$ radian $=180^{\circ}$
$\therefore \frac{11}{16}$ radian $=\frac{180}{\pi} \times \frac{11}{16}$ degree $=\frac{45 \times 11}{\pi \times 4}$ degree
$=\frac{45 \times 11 \times 7}{22 \times 4}$ degree $=\frac{315}{8}$ degree
$=36 \frac{3}{8}$ degree
$=39^{\circ}+\frac{3 \times 60}{8}$ minutes $\left[1^{\circ}=60^{\prime}\right]$
$=39^{\circ}+22^{\prime}+\frac{1}{2}$ minutes
$=39^{\circ} 22^{\prime} 30^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]$
$\cot x - \tan x = $
The value of $6({\sin ^6}\theta + {\cos ^6}\theta ) - 9({\sin ^4}\theta + {\cos ^4}\theta ) + 4$ is
Find, $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\cos x=-\frac{1}{3}, x$ in quadrant $III.$
Find the degree measures corresponding to the following radian measures ( Use $\pi=\frac{22}{7}$ ).
$\frac{7 \pi}{6}$
If ${\tan ^2}\alpha {\tan ^2}\beta + {\tan ^2}\beta {\tan ^2}\gamma + {\tan ^2}\gamma {\tan ^2}\alpha $$ + 2{\tan ^2}\alpha {\tan ^2}\beta {\tan ^2}\gamma = 1,$ then the value of ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $ is