Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).
$\frac{11}{16}$
We know that $\pi$ radian $=180^{\circ}$
$\therefore \frac{11}{16}$ radian $=\frac{180}{\pi} \times \frac{11}{16}$ degree $=\frac{45 \times 11}{\pi \times 4}$ degree
$=\frac{45 \times 11 \times 7}{22 \times 4}$ degree $=\frac{315}{8}$ degree
$=36 \frac{3}{8}$ degree
$=39^{\circ}+\frac{3 \times 60}{8}$ minutes $\left[1^{\circ}=60^{\prime}\right]$
$=39^{\circ}+22^{\prime}+\frac{1}{2}$ minutes
$=39^{\circ} 22^{\prime} 30^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]$
The value of ${\sin ^2}{5^o} + {\sin ^2}{10^o} + {\sin ^2}{15^o} + ... + $ ${\sin ^2}{85^o} + {\sin ^2}{90^o}$ is equal to
The value of $\tan ( - 945^\circ )$ is
The value of $\frac{{\cot 54^\circ }}{{\tan 36^\circ }} + \frac{{\tan 20^\circ }}{{\cot 70^\circ }}$ is
If $\sin \theta + {\rm{cosec}}\theta = 2,$ the value of ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ is
If $a\cos \theta + b\sin \theta = m$ and $a\sin \theta - b\cos \theta = n,$ then ${a^2} + {b^2} = $