Find the value of the trigonometric function $\sin 765^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that the values of $\sin x$ repeat after an interval of $2 n$ or $360^{\circ} .$

$\therefore \sin 765^{\circ}=\sin \left(2 \times 360^{\circ}+45^{\circ}\right)$

$=\sin 45^{\circ}=\frac{1}{\sqrt{2}}$

Similar Questions

If $A = 130^\circ $ and $x = \sin A + \cos A,$ then

If $\tan \theta = - \frac{1}{{\sqrt {10} }}$ and $\theta $ lies in the fourth quadrant, then $\cos \theta = $

If $\tan A + \cot A = 4,$ then ${\tan ^4}A + {\cot ^4}A$ is equal to

If $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ then $\cos \theta + \sin \theta $ is equal to

If $\sin \theta + {\rm{cosec}}\theta = 2,$ the value of ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ is