If $\theta $ and $\phi $ are angles in the $1^{st}$ quadrant such that $\tan \theta = 1/7$ and $\sin \phi = 1/\sqrt {10} $.Then
$\theta + 2\phi = 90^\circ $
$\theta + 2\phi = 60^\circ $
$\theta + 2\phi = 30^\circ $
$\theta + 2\phi = 45^\circ $
Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2},$ if $\tan x=\frac{-4}{3}, x$ in quadrant $II$
Find the degree measures corresponding to the following radian measures ( Use $\pi=\frac{22}{7}$ ).
$\frac{7 \pi}{6}$
Prove that $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$
$\cot x - \tan x = $
Prove that
$3 \sin \frac{\pi}{6} \sec \frac{\pi}{3}-4 \sin \frac{5 \pi}{6} \cot \frac{\pi}{4}=1$