Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$-4$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that $\pi$ radian $=180^{\circ}$

$-4$ radian $=\frac{180}{\pi} \times(-4)$ degree

$=\frac{180 \times 7(-4)}{22}$ degree

$=\frac{-2520}{11}$ degree $=-229 \frac{1}{11}$ degree

$=-229^{\circ}+\frac{1 \times 60}{11}$ minutes      $\left[1^{\circ}=60^{\prime}\right]$

$=-229^{\circ}+5^{\prime}+\frac{5}{11}$ minutes

$=-229^{\circ} 5^{\prime} 27^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]$

Similar Questions

If $\tan A + \cot A = 4,$ then ${\tan ^4}A + {\cot ^4}A$ is equal to

If $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$$ = \tan \alpha \tan \beta \tan \gamma $, then $(\sec \alpha - \tan \alpha )(\sec \beta - \tan \beta )$$(\sec \gamma - \tan \gamma ) = $

If $\tan x=\frac{3}{4}, \pi < x < \frac{3 \pi}{2},$ find the value of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$

In a right angled triangle the hypotenuse is $2 \sqrt 2$ times the perpendicular drawn from the opposite vertex. Then the other acute angles of the triangle are

Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\sin x=\frac{1}{4}, x$ in quadrant $II$