यदि $\tan \theta = - \frac{1}{{\sqrt {10} }}$ तथा $\theta $ चतुर्थ चतुर्थाश में हो, तो $\cos \theta = $
$1/\sqrt {11} $
$ - 1/\sqrt {11} $
$\sqrt {\frac{{10}}{{11}}} $
$ - \sqrt {\frac{{10}}{{11}}} $
यदि ${\tan ^2}\alpha \;{\tan ^2}\beta + {\tan ^2}\beta \;{\tan ^2}\gamma + {\tan ^2}\gamma \;{\tan ^2}\alpha + 2{\tan ^2}\alpha \;{\tan ^2}\beta \;{\tan ^2}\gamma = 1,$ तब
${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $ का मान है
यदि $\cos \theta = \frac{1}{2}\left( {x + \frac{1}{x}} \right)$, तो $\frac{1}{2}\left( {{x^2} + \frac{1}{{{x^2}}}} \right) = $
व्यंजक $1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}}$ का मान है
यदि $x{\sin ^3}\alpha + y{\cos ^3}\alpha = \sin \alpha \cos \alpha $ व $x\sin \alpha - y\cos \alpha = 0,$ तो ${x^2} + {y^2} = $
यदि $A = 130^\circ $ तथा $x = \sin A + \cos A,$ तब