If $\sin \theta + {\rm{cosec}}\theta = 2,$ the value of ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ is
$10$
${2^{10}}$
${2^9}$
$2$
If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n,$ then
Find the value of $\sin 15^{\circ}$
The value of ${\sin ^2}{5^o} + {\sin ^2}{10^o} + {\sin ^2}{15^o} + ... + $ ${\sin ^2}{85^o} + {\sin ^2}{90^o}$ is equal to
If $\sin \theta = \frac{{24}}{{25}}$ and $\theta $ lies in the second quadrant, then $\sec \theta + \tan \theta = $
Prove that: $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$