If $\sin \theta = \frac{{24}}{{25}}$ and $\theta $ lies in the second quadrant, then $\sec \theta + \tan \theta = $
$-3$
$-5$
$-7$
$-9$
If $\tan \theta = \frac{{20}}{{21}},$ cos$\theta$ will be
If $\alpha = 22^\circ 30',$ then $(1 + \cos \alpha )(1 + \cos 3\alpha )$ $(1 + \cos 5\alpha )(1 + \cos 7\alpha )$ equals
The value of $\cot \frac{\pi}{24}$ is :
If $\theta $ lies in the second quadrant, then the value of $\sqrt {\left( {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} $
Find the value of:
$\sin 75^{\circ}$