If $\sin \theta = \frac{{24}}{{25}}$ and $\theta $ lies in the second quadrant, then $\sec \theta + \tan \theta = $
$-3$
$-5$
$-7$
$-9$
If $A + C = B,$ then $\tan A\,\tan B\,\tan C = $
If $x = a{\cos ^3}\theta ,y = b{\sin ^3}\theta ,$ then
The equation ${\sin ^2}\theta = \frac{{{x^2} + {y^2}}}{{2xy}},x,y, \ne 0$ is possible if
If $\tan x=\frac{3}{4}, \pi < x < \frac{3 \pi}{2},$ find the value of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$
The value of the expression $1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}}$ is equal to