If $\sin \theta = \frac{{24}}{{25}}$ and $\theta $ lies in the second quadrant, then $\sec \theta + \tan \theta = $

  • A

    $-3$

  • B

    $-5$

  • C

    $-7$

  • D

    $-9$

Similar Questions

If $A + C = B,$ then $\tan A\,\tan B\,\tan C = $

If $x = a{\cos ^3}\theta ,y = b{\sin ^3}\theta ,$ then

The equation ${\sin ^2}\theta  = \frac{{{x^2} + {y^2}}}{{2xy}},x,y, \ne 0$ is possible if

If $\tan x=\frac{3}{4}, \pi < x < \frac{3 \pi}{2},$ find the value of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$

The value of the expression $1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}}$ is equal to