Find the value of $\sin 15^{\circ}$
We have
$\sin {15^\circ } = \sin \left( {{{45}^\circ } - {{30}^\circ }} \right)$
$ = \sin {45^\circ }\cos {30^\circ } - \cos {45^\circ }\sin {30^\circ }$
$ = \frac{1}{{\sqrt 2 }} \times \frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 2 }} \times \frac{1}{2} = \frac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Convert $6$ radians into degree measure.
The incorrect statement is
If in two circles, arcs of the same length subtend angles $60^{\circ}$ and $75^{\circ}$ at the centre, find the ratio of their radii.
If $\sec \theta + \tan \theta = p,$ then $\tan \theta $ is equal to
If $\cot x=-\frac{5}{12}, x$ lies in second quadrant, find the values of other five trigonometric functions.