यदि $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (जहाँ $ x, y, z$ सभी शून्य नहीं हैं) का $x = 0$,$y = 0$,$z = 0$ के अतिरिक्त भी कोई हल है, तो  $a, b $ और $ c$  में सम्बन्ध है

  • [IIT 1978]
  • A

    ${a^2} + {b^2} + {c^2} + 3abc = 0$

  • B

    ${a^2} + {b^2} + {c^2} + 2abc = 0$

  • C

    ${a^2} + {b^2} + {c^2} + 2abc = 1$

  • D

    ${a^2} + {b^2} + {c^2} - bc - ca - ab = 1$

Similar Questions

यदि $2x + 3y - 5z = 7, \,x + y + z = 6$, $3x - 4y + 2z = 1,$ तो  $x =$

यदि समीकरण निकाय

$2 x+y-z=5$

$2 x-5 y+\lambda z=\mu$

$x+2 y-5 z=7$

के अनंत हल हैं, तो $(\lambda+\mu)^2+(\lambda-\mu)^2$ बराबर है

  • [JEE MAIN 2023]

निम्नलिखित में दिए गए शीर्ष बिंदुओं वाले त्रिभुजों का क्षेत्रफल ज्ञात कीजिए।: $(1,0),(6,0),(4,3)$

$\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$ का मान ज्ञात कीजिए।

माना कि $\alpha, \beta$ एवं $\gamma$ वास्तविक संख्याएं (real numbers) हैं। निम्न रैखिक समीकरण निकाय (system of linear equations) पर विचार कीजिए।

$x+2 y+z=7$

$x+\alpha z=11$

$2 x-3 y+\beta z=\gamma$

List-$I$ की प्रत्येक प्रविष्टि (entry) का List-$II$ की सही प्रविष्टियों (entries) से मिलान कीजिये।

List - $I$ List - $II$
($P$)यदि $\beta=\frac{1}{2}(7 \alpha-3)$ एवं $\gamma=28$, तब निकाय का(के) ($1$) क अद्वितीय हल (unique solution) है
($Q$)यदि $\beta=\frac{1}{2}(7 \alpha-3)$ एवं $\gamma \neq 28$, तब निकाय का(के) ($2$)कोई हल नहीं है

($R$) Iयदि $\beta \neq \frac{1}{2}(7 \alpha-3)$ जहाँ $\alpha=1$ एवं $\gamma \neq 28$, तब निकाय का(के)

($3$)अनंत हल हैं
($S$) यदि $\beta \neq \frac{1}{2}(7 \alpha-3)$ जहाँ $\alpha=1$ एवं $\gamma=28$, तब निकाय का(के) ($4$) $x=11, y=-2$ एवं $z=0$ एक हल है
  ($5$) $x=-15, y=4$ एवं $z=0$ एक हल है

सही विकल्प है:

  • [IIT 2023]