यदि $2x + 3y - 5z = 7, \,x + y + z = 6$, $3x - 4y + 2z = 1,$ तो  $x =$

  • A

    $\left| {\,\begin{array}{*{20}{c}}2&{ - 5}&7\\1&1&6\\3&2&1\end{array}\,} \right| \div \left| {\,\begin{array}{*{20}{c}}7&3&{ - 5}\\6&1&1\\1&{ - 4}&2\end{array}\,} \right|$

  • B

    $\left| {\,\begin{array}{*{20}{c}}{ - 7}&3&{ - 5}\\{ - 6}&1&1\\{ - 1}&{ - 4}&2\end{array}\,} \right| \div \left| {\,\begin{array}{*{20}{c}}2&3&{ - 5}\\1&1&1\\3&{ - 4}&2\end{array}\,} \right|$

  • C

    $\left| {\,\begin{array}{*{20}{c}}7&3&{ - 5}\\6&1&1\\1&{ - 4}&2\end{array}\,} \right| \div \left| {\,\begin{array}{*{20}{c}}2&3&{ - 5}\\1&1&1\\3&{ - 4}&2\end{array}\,} \right|$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि निकाय के समीकरणों $x - ky - z = 0$, $kx - y - z = 0$ तथा $x + y - z = 0$ का एक अशून्य हल है, तो $ k $ के संभावित मान होंगे

  • [IIT 2000]

$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $

यदि समीकरणों के निकाय $\alpha x+y+z=5$, $x +2 y +3 z =4, x +3 y +5 z =\beta$ के अनन्त हल है तो क्रमित युग्म $(\alpha, \beta)$ का मान होगा:

  • [JEE MAIN 2022]

यदि $\Delta = \left| {\,\begin{array}{*{20}{c}}x&y&z\\p&q&r\\a&b&c\end{array}\,} \right|,$ तो  $\left| {\,\begin{array}{*{20}{c}}x&{2y}&z\\{2p}&{4q}&{2r}\\a&{2b}&c\end{array}\,} \right|$ का मान होगा

माना रैखिक समीकरण निकाय  $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ के अनंत हल है, तो निकाय  $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10$ 

  • [JEE MAIN 2023]