यदि $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, तब
$ a$ , इकाई का एक घनमूल है
$b,$ इकाइ एक घनमूल है
$\left( {\frac{a}{b}} \right)$, इकाई का एक घनमूल है
$\left( {\frac{a}{b}} \right)$ $, -1$ का एक घनमूल है
यदि $a \ne p,b \ne q,c \ne r$ और $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ =$0,$ तो $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $
यदि समीकरण निकाय $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$के अनंत हल हैं तो $13 \alpha \beta$ बराबर है
यदि $\left| {\,\begin{array}{*{20}{c}}{a + x}&{a - x}&{a - x}\\{a - x}&{a + x}&{a - x}\\{a - x}&{a - x}&{a + x}\end{array}\,} \right| = 0$ तो $x$ के मान होंगे
यदि रैखिक समीकरण निकाय $x + y + z =5$, $x +2 y +2 z =6$, $x +3 y +\lambda z =\mu,(\lambda, \mu \in R )$ के अनन्त हल है, तो $\lambda+\mu$ का मान है
$\left| {\,\begin{array}{*{20}{c}}1&{\cos (\beta - \alpha )}&{\cos (\gamma - \alpha )}\\{\cos (\alpha - \beta )}&1&{\cos (\gamma - \beta )}\\{\cos (\alpha - \gamma )}&{\cos (\beta - \gamma )}&1\end{array}} \right|$ का मान होगा