If $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, then
$a $ is one of the cube roots of unity
$b$ is one of the cube roots of unity
$\left( {\frac{a}{b}} \right)$is one of the cube roots of unity
$\left( {\frac{a}{b}} \right)$is one of the cube roots of $ -1$
If $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$and $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$, then $B$ is given by
If the system of linear equations $2 \mathrm{x}+2 \mathrm{ay}+\mathrm{az}=0$ ; $2 x+3 b y+b z=0$ ; $2 \mathrm{x}+4 \mathrm{cy}+\mathrm{cz}=0$ ; where $a, b, c \in R$ are non-zero and distinct; has a non-zero solution, then
The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is
The values of $\alpha$, for which $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$, lie in the interval
The ordered pair $(a, b)$, for which the system of linear equations $3 x-2 y+z=b$ ; $5 x-8 y+9 z=3$ ; $2 x+y+a z=-1$ has no solution, is