If $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, then

  • A

    $a $ is one of the cube roots of unity

  • B

    $b$ is one of the cube roots of unity

  • C

    $\left( {\frac{a}{b}} \right)$is one of the cube roots of unity

  • D

    $\left( {\frac{a}{b}} \right)$is one of the cube roots of $ -1$

Similar Questions

If $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$and $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$, then $B$ is given by

If the system of linear equations $2 \mathrm{x}+2 \mathrm{ay}+\mathrm{az}=0$ ; $2 x+3 b y+b z=0$ ; $2 \mathrm{x}+4 \mathrm{cy}+\mathrm{cz}=0$ ; where $a, b, c \in R$ are non-zero and distinct; has a non-zero solution, then 

  • [JEE MAIN 2020]

The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is

The values of $\alpha$, for which $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$, lie in the interval

  • [JEE MAIN 2024]

The ordered pair $(a, b)$, for which the system of linear equations  $3 x-2 y+z=b$  ;  $5 x-8 y+9 z=3$  ;  $2 x+y+a z=-1$ has no solution, is

  • [JEE MAIN 2022]