સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ ના બીજ મેળવો.
$1, 2$
$-1, 2$
$1, -2$
$-1, -2$
જો ${A_i} = \left[ {\begin{array}{*{20}{c}}{{a^i}}&{{b^i}}\\{{b^i}}&{{a^i}}\end{array}} \right]$ અને $|a|\, < 1,\,|b|\, < 1$, તો $\sum\limits_{i = 1}^\infty {\det ({A_i})} $= . . .
સમીકરણની સંહતિ $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$ ને શૂન્યતર ઉકેલ હોય, તો $\lambda $ ની કિમત મેળવો.
સમીકરણોની જોડ $2x + y + z = \beta $ , $10x - y + \alpha z = 10$ અને $4x+ 3y-z =6$ ને એકાકી ઉકેલ હોય તો તે . . . . પર આધારિત હોય.
જો રેખાઓ $2 x-y+3=0,6 x+3 y+1=0$ અને $\alpha x+2 y-2=0$ ત્રિકોણ ન બનાવે તેવી $\alpha$ ની તમામ વાસ્તવિક સંખ્યાઓના વર્ગનો સરવાળો $p$ હોય, તો $p$ અથવા તેનાથી નાનો મહત્તમ પૂણાંક___________ છે.
ધારોકે $D _{ k }=\left|\begin{array}{ccc}1 & 2 k & 2 k -1 \\ n & n ^2+ n +2 & n ^2 \\ n & n ^2+ n & n ^2+ n +2\end{array}\right|$.જો $\sum \limits_{ k =1}^n$ $D _{ k }=96$ હોય,તો $n=..........$