यदि $A = \left[ {\begin{array}{*{20}{c}}\alpha &2\\2&\alpha\end{array}} \right]$ और $|{A^3}|$=125, तो $\alpha  = $

  • [IIT 2004]
  • A

    $ \pm $ $3$

  • B

    $ \pm $ $2$

  • C

    $ \pm $ $5$

  • D

    $0$

Similar Questions

यदि $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ , तब ${A_1}$ का मान होगा

माना $d \in R$ तथा $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta  \in \left[ {0,2\pi } \right]$ है, तो $d$ का एक मान है 

  • [JEE MAIN 2019]

$A,B,C$ तथा $P,Q,R$ के प्रत्येक मान के लिए $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right|$ का मान है

  • [IIT 1994]

यदि $A =\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$ हो, तो दिखाइए $|3 A |=27| A |$

यदि $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, तब