If $A = \left[ {\begin{array}{*{20}{c}}\alpha &2\\2&\alpha \end{array}} \right]$ and $|{A^3}|$=125, then $\alpha = $
$ \pm $ $3$
$ \pm $ $2$
$ \pm $ $5$
$0$
For the system of linear equations
$2 x+4 y+2 a z=b$
$x+2 y+3 z=4$
$2 x-5 y+2 z=8$
which of the following is NOT correct?
If $A\, = \,\left[ \begin{gathered}
1\ \ \ \,1\ \ \ \,2\ \ \ \hfill \\
0\ \ \ \,2\ \ \ \,1\ \ \ \hfill \\
1\ \ \ \,0\ \ \ \,2\ \ \ \hfill \\
\end{gathered} \right]$ and $A^3 = (aA-I) (bA-I)$,where $a, b$ are integers and $I$ is a $3 × 3$ unit matrix then value of $(a + b)$ is equal to
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$ are
The remainder when the determinant $\left|\begin{array}{lll} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{array}\right|$ is divided by $5$ is
If the system of equations
$ 11 x+y+\lambda z=-5 $
$ 2 x+3 y+5 z=3 $
$ 8 x-19 y-39 z=\mu$
has infinitely many solutions, then $\lambda^4-\mu$ is equal to :