જો $A = \left[ {\begin{array}{*{20}{c}}\alpha &2\\2&\alpha \end{array}} \right]$ અને $|{A^3}|$=125, તો $\alpha = $
$ \pm $ $3$
$ \pm $ $2$
$ \pm $ $5$
$0$
જો $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$અને $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$, તો $B =$
જો $S$ એ $\lambda \in \mathrm{R}$ ની બધી કિમતોનો ગણ છે કે જ્યાં સુરેખ સંહિતા
$2 x-y+2 z=2$
$x-2 y+\lambda z=-4$
$x+\lambda y+z=4$
ને એક પણ ઉકેલ ના હોય તો ગણ $S$ માં
જો $(2, -6), (5, 4)$ અને $(\mathrm{k}, 4)$ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ $35$ ચોરસ એકમ હોય, તો $\mathrm{k}$ નું મૂલ્ય .............. .
$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R$ નું મહત્તમ મૂલ્ય ..... છે.
$xyz$ ના ગુણાકારની ન્યૂનતમ કિમત મેળવો કે જેથી $\left| {\begin{array}{*{20}{c}}
x&1&1 \\
1&y&1 \\
1&1&z
\end{array}} \right|$ ની કિમંત અનૃણ મળે.