જો $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$અને $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$, તો $B =$
$B = 4A$
$B = - 4A$
$B = - A$
$B = 6A$
ધારો કે $a ,b ,c $ માટે $b + c \ne 0$ . જો $\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \bullet a}&{{{\left( { - 1} \right)}^{n + 1}} \bullet b}&{{{\left( { - 1} \right)}^n} \bullet c}\end{array}} \right| = 0$ તો $n$ મેળવો.
નિશ્ચાયકની કિમત મેળવો : $\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$
સમીકરણની સંહતિ $2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$$5x + 10y + 5z = 11$તો $x$ ની કિમત મેળવો.
જો $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (કે જ્યાં $ x, y, z $ બધા શૂન્ય ન હોય) તો $x = 0$, $y = 0$, $z = 0$ સિવાય નો ઉકેલ હોય તો $ a, b $ અને $c$ વચ્ચેનો સંબંધ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $