If $A\, = \,\left[ \begin{gathered}
  1\ \ \ \,1\ \ \ \,2\ \ \  \hfill \\
  0\ \ \ \,2\ \ \ \,1\ \ \  \hfill \\
  1\ \ \ \,0\ \ \ \,2\ \ \  \hfill \\ 
\end{gathered}  \right]$ and $A^3 = (aA-I) (bA-I)$,where $a, b$ are integers and $I$ is a $3 × 3$ unit matrix then value of $(a + b)$ is equal to

  • A

    $4$

  • B

    $5$

  • C

    $6$

  • D

    $7$

Similar Questions

If the system of equations

$ 11 x+y+\lambda z=-5 $

$ 2 x+3 y+5 z=3 $

$ 8 x-19 y-39 z=\mu$

has infinitely many solutions, then $\lambda^4-\mu$ is equal to :

  • [JEE MAIN 2024]

Find equation of line joining $(3,1)$ and $(9,3)$ using determinants

Let $k_1$, $k_2$ be the maximum and minimum values of $k$ for which the system of equations given by

$x + ky = 1$ ; $kx + y = 2$;  $x + y = k$  are consistent then $k_1^2 + k_2^2$ is equal to

Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.

Let $\alpha, \beta(\alpha \neq \beta)$ be the values of $m$, for which the equations $x+y+z=1 ; x+2 y+4 z=m$ and $x+4 y+10 z=m^2$ have infinitely many solutions. Then the value of $\sum_{n=1}^{10}\left(n^\alpha+n^\beta\right)$ is equal to :

  • [JEE MAIN 2025]