For the system of linear equations
$2 x+4 y+2 a z=b$
$x+2 y+3 z=4$
$2 x-5 y+2 z=8$
which of the following is NOT correct?
It has infinitely many solutions if $a=3, b=6$
It has unique solution if $a=b=6$
It has unique solution if $a=b=8$
It has infinitely many solution if $a=3, b=8$
If $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,then the value of $ k $ is
Find values of $\mathrm{k}$ if area of triangle is $4$ square units and vertices are $(\mathrm{k}, 0),(4,0),(0,2)$
$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $
Let $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in R$. If $x(\alpha, 1,2)+y(1, \beta, 2)$ $+z(2,3, \gamma)=(0,0,0)$ for some $x, y, z \in R, x y z \neq$ 0 , then $6 \alpha+4 \beta+\gamma$ is equal to..............
Number of triplets of $a, b \, \& \,c$ for which the system of equations,$ax - by = 2a - b$ and $(c + 1) x + cy = 10 - a + 3 b$ has infinitely many solutions and $x = 1, y = 3$ is one of the solutions, is :