If the system of equations

$ 11 x+y+\lambda z=-5 $

$ 2 x+3 y+5 z=3 $

$ 8 x-19 y-39 z=\mu$

has infinitely many solutions, then $\lambda^4-\mu$ is equal to :

  • [JEE MAIN 2024]
  • A

    $49$

  • B

    $45$

  • C

    $47$

  • D

    $51$

Similar Questions

If ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ and ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ are the given determinants, then

$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,which of the following is a factor for the above determinant

The system of linear equations $x + \lambda y - z = 0,\lambda x - y - z = 0\;,\;x + y - \lambda z = 0$ has a non-trivial solution for:

  • [JEE MAIN 2016]

Let $\theta \in\left(0, \frac{\pi}{2}\right)$. If the system of linear equations

$\left(1+\cos ^{2} \theta\right) x+\sin ^{2} \theta y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\left(1+\sin ^{2} \theta\right) y+4 \sin 3 \theta z=0$

$\cos ^{2} \theta x+\sin ^{2} \theta y+(1+4 \sin 3 \theta) z=0$

has a non-trivial solution, then the value of $\theta$ is :

  • [JEE MAIN 2021]

The value of $\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $