If $a,b,c$ are respectively the ${p^{th}},{q^{th}}{r^{th}}$terms of an $A.P.,$ the $\left| {\,\begin{array}{*{20}{c}}a&p&1\\b&q&1\\c&r&1\end{array}\,} \right| = $

  • A

    $1$

  • B

    $-1$

  • C

    $0$

  • D

    $pqr$

Similar Questions

If the system of linear equations : $x+y+2 z=6$, $2 x+3 y+a z=a+1$, $-x-3 y+b z=2 b$ where $a, b \in R$, has infinitely many solutions, then $7 a+3 b$ is equal to :

  • [JEE MAIN 2025]

If $a \ne p,b \ne q,c \ne r$ and $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ =$ 0$, then $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $

If $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right| = 5$; then the value of $\left| {\,\begin{array}{*{20}{c}}{{b_2}{c_3} - {b_3}{c_2}}&{{c_2}{a_3} - {c_3}{a_2}}&{{a_2}{b_3} - {a_3}{b_2}}\\{{b_3}{c_1} - {b_1}{c_3}}&{{c_3}{a_1} - {c_1}{a_3}}&{{a_3}{b_1} - {a_1}{b_3}}\\{{b_1}{c_2} - {b_2}{c_1}}&{{c_1}{a_2} - {c_2}{a_1}}&{{a_1}{b_2} - {a_2}{b_1}}\end{array}\,} \right|$is

Consider the system of linear equations

$x+y+z=5, x+2 y+\lambda^2 z=9$

$x+3 y+\lambda z=\mu$, where $\lambda, \mu \in R$. Then, which of the following statement is NOT correct?

  • [JEE MAIN 2024]

Show that points $A(a, b+c), B(b, c+a), C(c, a+b)$ are collinear