Show that points $A(a, b+c), B(b, c+a), C(c, a+b)$ are collinear

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Area of $\triangle \mathrm{ABC}$ is given by the relation,

$\Delta=\frac{1}{2}\left|\begin{array}{lll}a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1\end{array}\right|$

$=\frac{1}{2}\left|\begin{array}{ccc}a & b+c & 1 \\ b-a & a-b & 0 \\ c-a & a-c & 0\end{array}\right|$ 

( Applying $ R_{2} \rightarrow R_{2}-R_{1}$ and  $R_{3} \rightarrow R_{3}-R_{1}$)

$=\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}a & b+c & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0\end{array}\right|$

$=\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}a & b+c & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right| \quad\left(\text { Applying } R_{3} \rightarrow R_{3}+R_{2}\right)$

$=0 \quad$ (All elements of $R_{3}$ are $0$ )

Thus, the area of the triangle formed by points $A, B$ and $C$ is zero.

Hence, the points $A, B$ and $C$ are collinear.

Similar Questions

If ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$, then ${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $

Given the system of equation $a(x + y + z)=x,b(x + y + z) = y, c(x + y + z) = z$ where $a,b,c$  are non-zero real numbers. If the real numbers $x,y,z$ are such that $xyz \neq 0,$ then  $(a + b + c)$ is equal to-

Let $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ . If $A ^{2}+\gamma A +18 I = O$, then $\operatorname{det}( A )$ is equal to

  • [JEE MAIN 2022]

If $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right],$ find $|A|$.

If $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; then $a,b,c$ are in