$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $
$3abc + {a^3} + {b^3} + {c^3}$
$3abc - {a^3} - {b^3} - {c^3}$
$abc - {a^3} + {b^3} + {c^3}$
$abc + {a^3} - {b^3} - {c^3}$
यदि रेखीय समीकरण निकाय
$2 x + y - z =7$
$x -3 y +2 z =1$
$x +4 y +\delta z = k$ है, जहाँ $\delta, k \in R$ के अनंत हल है, तो $\delta+ k$ बराबर है :
यदि $a, b, c$ शून्येतर वास्तविक संख्याएँ हैं तथा यदि समीकरण निकाय $(a-1) x=y+z$; $(b-1) y=z+x$; $(c-1) z=x+y$ का एक अतुच्छ हल है, तो $a b+b c+c a$ बराबर है
माना कुछ $\alpha, \beta \in \mathbb{R}$ के लिये समीकरण निकाय $ \alpha x+2 y+z=1 $ $ 2 \alpha x+3 y+z=1 $ $ 3 x+\alpha y+2 z=\beta$ है। निम्न में से कौनसा सही नहीं है
यदि $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$, तो $x =$
$\alpha$ के मानों की संख्या, जिसके लिये समीकरण निकाय:
$x+y+z=\alpha$
$\alpha x+2 \alpha y+3 z=-1$
$x+3 \alpha y+5 z=4$ असंगत है, होंगी