यदि निकाय के समीकरणों $x - ky - z = 0$, $kx - y - z = 0$ तथा $x + y - z = 0$ का एक अशून्य हल है, तो $ k $ के संभावित मान होंगे
$-1, 2$
$1, 2$
$0, 1$
$-1, 1$
यदि $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ तो क्रमित युग्म $(A, B)$ बराबर है
यदि $2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$ $5x + 10y + 5z = 11$, तो $x$ का मान है
यदि $\Delta_{1}=\left|\begin{array}{ccc} x & \sin \theta & \cos \theta \\ -\sin \theta & - x & 1 \\ \cos \theta & 1 & x \end{array}\right|$ तथा $\Delta_{2}=\left|\begin{array}{ccc}x & \sin 2 \theta & \cos 2 \theta \\ -\sin 2 \theta & -x & 1 \\ \cos 2 \theta & 1 & x\end{array}\right|, x \neq 0$; तो सभी $\theta \in\left(0, \frac{\pi}{2}\right)$ के लिए
रेखिक समीकरण निकाय $x+y+z=4 \mu$, $x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$ जहाँ $\lambda, \mu \in \mathrm{R}$ हैं का विचार कीजिए। निम्न कथनों में से कौन सा सही नहीं है ?
यदि $A =\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right],$ तो दिखाइए $|2 A |=4 \mid A$