यदि $\omega $ इकाई का काल्पनिक मूल हो, तो $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ का मान होगा
${a^3} + {b^3} + {c^3} - 3abc$
${a^2}b - {b^2}c$
$0$
${a^2} + {b^2} + {c^2}$
माना समीकरण निकाय $x+2 y+3 z=5$, $2 \mathrm{x}+3 \mathrm{y}+\mathrm{z}=9,4 \mathrm{x}+3 \mathrm{y}+\lambda \mathrm{z}=\mu$ के अनंत हल है। तो $\lambda+2 \mu$ बराबर है :
$x$ के मान ज्ञात कीजिए यदि
$\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
यदि $A = \left| {\,\begin{array}{*{20}{c}}{\sin (\theta + \alpha )}&{\cos (\theta + \alpha )}&1\\{\sin (\theta + \beta )}&{\cos (\theta + \beta )}&1\\{\sin (\theta + \gamma )}&{\cos (\theta + \gamma )}&1\end{array}\,} \right|$ ,तब
माना $P$ तथा $Q, 3 \times 3$ आव्यूह हैं तथा $P \neq Q$ है। यदि $P^{3}=Q^{3}$ तथा $P^{2} Q=Q^{2} P$ है, तो सारणिक $\left(P^{2}+Q^{2}\right)$ बराबर है
यदि समीकरण निकाय $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$के अनंत हल हैं तो $13 \alpha \beta$ बराबर है