माना समीकरण निकाय $x+2 y+3 z=5$, $2 \mathrm{x}+3 \mathrm{y}+\mathrm{z}=9,4 \mathrm{x}+3 \mathrm{y}+\lambda \mathrm{z}=\mu$ के अनंत हल है। तो $\lambda+2 \mu$ बराबर है :

  • [JEE MAIN 2024]
  • A

    $28$

  • B

    $17$

  • C

    $22$

  • D

    $15$

Similar Questions

माना कि दो $3 \times 3$ आव्यूह (matrices) $M$ तथा $N$ इस प्रकार है कि $M N=N M$ है। यदि $M \neq N^2$ तथा $M^2=N^4$ हो, तो

$(A)$ $\left( M ^2+ MN ^2\right)$ के सारणिक (determinant) का मान शून्य है।

$(B)$ एक ऐसा $3 \times 3$ शून्येतर (non-zero) आव्यूह $U$ है जिसके लिये $\left( M ^2+ MN ^2\right) U$ शून्य आव्यूह है।

$(C)$ $\left( M ^2+ MN ^2\right)$ के सारणिक मान $\geq 1$ है।

$(D)$ $3 \times 3$ आव्यूह $U$ जिसके लिये $\left( M ^2+ MN ^2\right) U$ शून्य आव्यूह है तो $U$ भी एक शून्य आव्यूह होगा।

  • [IIT 2014]

समीकरण  $\left| {\,\begin{array}{*{20}{c}}1&4&{20}\\1&{ - 2}&5\\1&{2x}&{5{x^2}}\end{array}\,} \right| = 0$ के मूल हैं

  • [IIT 1987]

यदि समीकरण निकाय

$2 x+y-z=5$

$2 x-5 y+\lambda z=\mu$

$x+2 y-5 z=7$

के अनंत हल हैं, तो $(\lambda+\mu)^2+(\lambda-\mu)^2$ बराबर है

  • [JEE MAIN 2023]

यदि समीकरण निकाय $3x - 2y + z = 0$, $\lambda x - 14y + 15z = 0$, $x + 2y + 3z = 0$ अशून्य हल रखता है, तब $\lambda  = $

$\left| {\,\begin{array}{*{20}{c}}{a - 1}&a&{bc}\\{b - 1}&b&{ca}\\{c - 1}&c&{ab}\end{array}\,} \right| = $