यदि $A = \left| {\,\begin{array}{*{20}{c}}{\sin (\theta + \alpha )}&{\cos (\theta + \alpha )}&1\\{\sin (\theta + \beta )}&{\cos (\theta + \beta )}&1\\{\sin (\theta + \gamma )}&{\cos (\theta + \gamma )}&1\end{array}\,} \right|$ ,तब
$A = 0$, $\theta $ के सभी मानों के लिये
$A$, , का एक विषम फलन है
$A = 0$, $\theta = \alpha + \beta + \gamma $ के लिये
$A$, $\theta $ से स्वतंत्र है
यदि $2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$ $5x + 10y + 5z = 11$, तो $x$ का मान है
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $
रैखिक समीकरण निकाय के लिए निम्न में से कौनसा सही नहीं है
यदि समीकरणों के निकाय $x + y + z = 6$, $x + 2y + 3z = 10,$ $x + 2y + \lambda z = \mu $ का कोई हल नहीं है, तब
माना $\alpha$ के सभी वास्तविक मानों, जिनके लिए रेखाएँ $2 x-y+3=0,6 x+3 y+1=0$ तथा $\alpha x+2 y-2=0$ एक त्रिभुज नहीं बनाती है, के वर्गों का योग $\mathrm{p}$ है, तो महत्तम पूर्णांक $\leq \mathrm{p}$ है .......।