If $\omega $ is an imaginary root of unity, then the value of $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ is
${a^3} + {b^3} + {c^3} - 3abc$
${a^2}b - {b^2}c$
$0$
${a^2} + {b^2} + {c^2}$
The system of equations $-k x+3 y-14 z=25$ $-15 x+4 y-k z=3$ $-4 x+y+3 z=4$ is consistent for all $k$ in the set
The least value of the product $xyz$ for which the determinant $\left| {\begin{array}{*{20}{c}}
x&1&1 \\
1&y&1 \\
1&1&z
\end{array}} \right|$ is non-negative, is
If $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; then $a,b,c$ are in
The value of $x,$ if $\left| {\,\begin{array}{*{20}{c}}{ - x}&1&0\\1&{ - x}&1\\0&1&{ - x}\end{array}\,} \right| = 0 $ is equal to