If $\omega $ is an imaginary root of unity, then the value of $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ is

  • A

    ${a^3} + {b^3} + {c^3} - 3abc$

  • B

    ${a^2}b - {b^2}c$

  • C

    $0$

  • D

    ${a^2} + {b^2} + {c^2}$

Similar Questions

 If the system of equations $2 x-y+z=4$, $5 x+\lambda y+3 z=12$,$100 x-47 y+\mu z=212$ has infinitely many solutions, then $\mu-2 \lambda$ is equal to

  • [JEE MAIN 2025]

The system of equations  $-k x+3 y-14 z=25$  $-15 x+4 y-k z=3$  $-4 x+y+3 z=4$  is consistent for all $k$ in the set

  • [JEE MAIN 2022]

The least value of the product $xyz$ for which the determinant $\left| {\begin{array}{*{20}{c}}
  x&1&1 \\ 
  1&y&1 \\ 
  1&1&z 
\end{array}} \right|$ is non-negative, is 

  • [JEE MAIN 2015]

If $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; then $a,b,c$ are in

The value of $x,$ if $\left| {\,\begin{array}{*{20}{c}}{ - x}&1&0\\1&{ - x}&1\\0&1&{ - x}\end{array}\,} \right| = 0 $ is equal to