यदि $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$and $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$,तो $B$ का मान होगा
$B = 4A$
$B = - 4A$
$B = - A$
$B = 6A$
$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $
निकाय $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ के अद्वितीय हल का अस्तित्व निर्भर करता है
यदि $S\, 'b'$ की उन विभिन्न मानों का समुच्चय है जिनके लिए निम्न रैखिक समीकरण निकाय
$x+y+z=1$
$x+a y+z=1$
$a x+b y+z=0$
का कोई हल नहीं है, तो $S$ :
माना एक न्याय पासे को फेंकने पर प्राप्त संख्या $N$ है यदि समीकरण निकाय $x+y+z=1$ ; $2 x+N y+2 z=2$ ; $3 x+3 y+N z=3$ के अद्वितीय हल होने की प्रायिकता $\frac{k}{6}$ है, तो $k$ तथा $N$ के सभी संभव मानों का योग है
$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $