यदि $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$and $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$,तो $B$ का मान होगा

  • A

    $B = 4A$

  • B

    $B = - 4A$

  • C

    $B = - A$

  • D

    $B = 6A$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $

निकाय $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ के अद्वितीय हल का अस्तित्व निर्भर करता है

यदि $S\, 'b'$ की उन विभिन्न मानों का समुच्चय है जिनके लिए निम्न रैखिक समीकरण निकाय

$x+y+z=1$

$x+a y+z=1$

$a x+b y+z=0$

का कोई हल नहीं है, तो $S$ :

  • [JEE MAIN 2017]

माना एक न्याय पासे को फेंकने पर प्राप्त संख्या $N$ है यदि समीकरण निकाय $x+y+z=1$  ;   $2 x+N y+2 z=2$  ;  $3 x+3 y+N z=3$ के अद्वितीय हल होने की प्रायिकता $\frac{k}{6}$ है, तो $k$ तथा $N$ के सभी संभव मानों का योग है

  • [JEE MAIN 2023]

$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $