If $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ then $K = $

  • A

    $-4$

  • B

    $2$

  • C

    $4$

  • D

    $8$

Similar Questions

If $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|,$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ then ${A_1}$ is equal to

Consider the following system of equations : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$    where $a , b$ and $c$ are real constants. Then the system of equations :

  • [JEE MAIN 2021]

The system of equations : $2x\, \cos^2\theta + y\, \sin2\theta - 2\sin\theta = 0$ $x\, \sin2\theta + 2y\, \sin^2\theta = - 2\, \cos\theta$ $x\, \sin\theta - y \cos\theta = 0$ , for all values of $\theta$ , can

If $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ then the determinant $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ is equal to :

  • [JEE MAIN 2021]

If $A_1B_1C_1,\, A_2B_2C_2,\, A_3B_3C_3$ are three digit number each of which is divisible by $k$ and $\Delta  = \left| {\begin{array}{*{20}{c}}
  {{A_1}{\kern 1pt} }&{{B_1}}&{{C_1}} \\ 
  {{A_2}}&{{B_2}}&{{C_2}} \\ 
  {{A_3}}&{{B_3}}&{{C_3}} 
\end{array}} \right|$ ; then $\Delta $ is divisible by