જો $-9 $ એ સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ નું બીજ હોય તો બાકી ના બે બીજ મેળવો.

  • [IIT 1983]
  • A

    $2, 7$

  • B

    $-2, 7$

  • C

    $2, -7$

  • D

    $-2, -7$

Similar Questions

જો ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda  - 1}\\
{\lambda  - 1}&\lambda 
\end{array}} \right);\,\lambda  \in N$ હોય તો  $|A_1| + |A_2| + ..... + |A_{300}|$ મેળવો.

જો $\left| {\begin{array}{*{20}{c}}
  {\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\ 
  {{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\ 
  {\cos 4x}&{{{\cos }^2}x}&{\cos 2x} 
\end{array}} \right| = {a_0} + {a_1}\sin x + {a_2}{\sin ^2}x + .....$ તો $a_0$ મેળવો.

$\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$ નું મૂલ્ય શોધો. 

જો $\alpha+\beta+\gamma=2 \pi$ તો સમીકરણ સંહતિ  $x+(\cos \gamma) y+(\cos \beta) z=0$  ;  $(\cos \gamma) x+y+(\cos \alpha) z=0$  ; $(\cos \beta) x+(\cos \alpha) y+z=0$ નો ઉકેલગણ . . .  ..

  • [JEE MAIN 2021]

જો સમીકરણ સંહતિ

$ x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 $

$ x+(\cos \alpha) y+(\sin \alpha) z=0 $

$ x+(\sin \alpha) y-(\cos \alpha) z=0$

ને એક અસામાન્ય ઉકેલ હોય, તો $\alpha \in\left(0, \frac{\pi}{2}\right)$ બરાબર ............ છે.

  • [JEE MAIN 2024]