જો $-9 $ એ સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ નું બીજ હોય તો બાકી ના બે બીજ મેળવો.

  • [IIT 1983]
  • A

    $2, 7$

  • B

    $-2, 7$

  • C

    $2, -7$

  • D

    $-2, -7$

Similar Questions

$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ એ . . . વડે વિભાજ્ય નથી .

જો $a$, $b$, $c$, $d$, $e$, $f$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
  {{a^2}}&{{d^2}}&x \\ 
  {{b^2}}&{{e^2}}&y \\ 
  {{c^2}}&{{f^2}}&z 
\end{array}} \right|$ એ . . . .  પર આધારિત હોય.

જો  $A\, = \,\left[ \begin{gathered}
  1\ \ \ \,1\ \ \ \,2\ \ \  \hfill \\
  0\ \ \ \,2\ \ \ \,1\ \ \  \hfill \\
  1\ \ \ \,0\ \ \ \,2\ \ \  \hfill \\ 
\end{gathered}  \right]$ અને $A^3 = (aA-I) (bA-I)$,કે જ્યાં $a, b$ એ પૃણાંક છે  અને એકમ શ્રેણિક $I$ ની કક્ષા  $3 × 3$ હોય તો $(a + b)$ મેળવો.

જો સમીકરણ સંહિતા 

$x-2 y+3 z=9$

$2 x+y+z=b$

$x-7 y+a z=24$

ને અનંત ઉકેલો હોય તો $a - b$ ની કિમત મેળવો 

  • [JEE MAIN 2020]

જો  $\left| {\begin{array}{*{20}{c}}
  {^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\ 
  {^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\ 
  {^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}} 
\end{array}} \right| = 0$ હોય તો  $r$ મેળવો.