જો $-9 $ એ સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ નું બીજ હોય તો બાકી ના બે બીજ મેળવો.
$2, 7$
$-2, 7$
$2, -7$
$-2, -7$
$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ એ . . . વડે વિભાજ્ય નથી .
જો $a$, $b$, $c$, $d$, $e$, $f$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{d^2}}&x \\
{{b^2}}&{{e^2}}&y \\
{{c^2}}&{{f^2}}&z
\end{array}} \right|$ એ . . . . પર આધારિત હોય.
જો $A\, = \,\left[ \begin{gathered}
1\ \ \ \,1\ \ \ \,2\ \ \ \hfill \\
0\ \ \ \,2\ \ \ \,1\ \ \ \hfill \\
1\ \ \ \,0\ \ \ \,2\ \ \ \hfill \\
\end{gathered} \right]$ અને $A^3 = (aA-I) (bA-I)$,કે જ્યાં $a, b$ એ પૃણાંક છે અને એકમ શ્રેણિક $I$ ની કક્ષા $3 × 3$ હોય તો $(a + b)$ મેળવો.
જો સમીકરણ સંહિતા
$x-2 y+3 z=9$
$2 x+y+z=b$
$x-7 y+a z=24$
ને અનંત ઉકેલો હોય તો $a - b$ ની કિમત મેળવો
જો $\left| {\begin{array}{*{20}{c}}
{^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\
{^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\
{^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}}
\end{array}} \right| = 0$ હોય તો $r$ મેળવો.