જો $\alpha+\beta+\gamma=2 \pi$ તો સમીકરણ સંહતિ $x+(\cos \gamma) y+(\cos \beta) z=0$ ; $(\cos \gamma) x+y+(\cos \alpha) z=0$ ; $(\cos \beta) x+(\cos \alpha) y+z=0$ નો ઉકેલગણ . . . ..
ખાલીગણ
અનંત ઉકેલ ધરાવે
માત્ર બેજ ઉકેલ ધરાવે
એક્જ ઉકેલ ધરાવે
જો $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|,$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ તો ${A_1}$ =
$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ ના બીજ મેળવો.
અંતરાલ $ - \frac{\pi }{4} \le x \le \frac{\pi }{4}$ માટે $\left| {\,\begin{array}{*{20}{c}}{\sin x}&{\cos x}&{\cos x}\\{\cos x}&{\sin x}&{\cos x}\\{\cos x}&{\cos x}&{\sin x}\end{array}\,} \right| = 0$ ના ભિન્ન વાસ્તવિક બીજની સંખ્યા મેળવો.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$ ના બીજ મેળવો.