જો સમીકરણ સંહતિ

$ x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 $

$ x+(\cos \alpha) y+(\sin \alpha) z=0 $

$ x+(\sin \alpha) y-(\cos \alpha) z=0$

ને એક અસામાન્ય ઉકેલ હોય, તો $\alpha \in\left(0, \frac{\pi}{2}\right)$ બરાબર ............ છે.

  • [JEE MAIN 2024]
  • A

     $\frac{3 \pi}{4}$

  • B

     $\frac{7 \pi}{24}$

  • C

     $\frac{5 \pi}{24}$

  • D

     $\frac{11 \pi}{24}$

Similar Questions

જો સમીકરણો $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ એ એકાકી ઉકેલ ધરાવે છે તો  $\lambda $ ની કિમંત  . . .   શક્ય નથી.

  • [AIEEE 2012]

નિશ્ચાયક $\Delta=\left|\begin{array}{rrr}1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0\end{array}\right|$ નું મૂલ્ય મેળવો. 

સાબિત કરો કે બિંદુઓ $A(a, b+c), B(b, c+a), C(c, a+b)$ સમરેખ છે.

જો $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$ હોય, તો $x =$ ........... .

જો $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ તો દરેક $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$ માટે  $det (A)$ ની કિમંત મેળવો.

  • [JEE MAIN 2019]