If $-9 $ is a root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$ then the other two roots are

  • [IIT 1983]
  • A

    $2, 7$

  • B

    $-2, 7$

  • C

    $2, -7$

  • D

    $-2, -7$

Similar Questions

If $2x + 3y - 5z = 7, \,x + y + z = 6$, $3x - 4y + 2z = 1,$ then  $x =$

If $A = \int\limits_1^{\sin \theta } {\frac{t}{{1 + {t^2}}}} dt$ and $B = \int\limits_1^{\cos ec\theta } {\frac{dt}{{t\left( {1 + {t^2}} \right)}}} $ , (where $\theta  \in \left( {0,\frac{\pi }{2}} \right))$, then the-value of $\left| {\begin{array}{*{20}{c}}
A&{{A^2}}&{ - B}\\
{{e^{A + B}}}&{{B^2}}&{ - 1}\\
1&{{A^2} + {B^2}}&{ - 1}
\end{array}} \right|$ is

Given the system of equation $a(x + y + z)=x,b(x + y + z) = y, c(x + y + z) = z$ where $a,b,c$  are non-zero real numbers. If the real numbers $x,y,z$ are such that $xyz \neq 0,$ then  $(a + b + c)$ is equal to-

One of the roots of the given equation $\left| {\,\begin{array}{*{20}{c}}{x + a}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right| = 0$ is

The number of distinct real roots of $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is

  • [JEE MAIN 2021]