यदि $a \ne b \ne c,$ तो $x$ का वह मान, जो समीकरण $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$ को संतुष्ट करता है, है
$x = 0$
$x = a$
$x = b$
$x = c$
यदि समीकरणों के निकाय $x+y+z=2$, $2 x+4 y-z=6$, $3 x+2 y+\lambda z=\mu$ के अनन्त हल हैं, तो
यदि वास्तविक संख्याओं $\alpha$ तथा $\beta$ के लिए रैखिक समीकरण निकाय : $x + y - z =2, x +2 y +\alpha z =1,2 x - y + z =\beta$ के अनंत हल हैं, तो $\alpha+\beta$ बराबर है ।
$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $
निम्नलिखित में से कौन सा कथन सही है।
यदि रैखिक समीकरण निकाय $x + y + z =5$, $x +2 y +2 z =6$, $x +3 y +\lambda z =\mu,(\lambda, \mu \in R )$ के अनन्त हल है, तो $\lambda+\mu$ का मान है