यदि $\frac{{x + y}}{2},\;y,\;\frac{{y + z}}{2}$ हरात्मक श्रेणी में हों, तो $x,\;y,\;z$ होंगे
समान्तर श्रेणी में
गुणोत्तर श्रेणी में
हरात्मक श्रेणी में
इनमें से कोई नहीं
$0.14189189189….$ को निम्न परिमेय संख्या के रूप में निरूपित कर सकते हैं
यदि $a,\;b,\;c,\;d$ भिन्न वास्तविक संख्यायें ऐसी हों कि $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$ हो, तब $a,\;b,\;c,\;d$ होंगे
माना धनात्मक संख्याएँ $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4$ तथा $\mathrm{a}_5$ एक $G.P.$ में है। माना इसके माध्य तथा प्रसरण क्रमशः $\frac{31}{10}$ तथा $\frac{\mathrm{m}}{\mathrm{n}}$ है, जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ असभाज्य हैं। यदि इन संख्याओं के व्युत्क्रमों का माध्य $\frac{31}{40}$ है तथा $a_3+a_4+a_5=14$ है, तो $m+n$ बराबर है_____________।
एक गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल $\frac{13}{12}$ है तथा उनका गुणानफल $1$ है, तो सार्व अनुपात तथा पदों को ज्ञात कीजिए ?
एक गुणोत्तर श्रेणी में पदों की संख्या सम है। यदि सभी पदों का योगफल विषम स्थान वाले पदों के योगफल का $5$ गुना है, तब सार्व-अनुपात होगा